Derivation of the Rate Law for the  a Realistic, Reversible Michaelis-Menten Mechanism


http://biology.stackexchange.com/a/43832/1136

Created with Wolfram Mathematica

1 Preliminaries

realistic_mm_forSO_HTML_version_1.png

realistic_mm_forSO_HTML_version_2.png

2. Mechanism

realistic_mm_forSO_HTML_version_3.png

realistic_mm_forSO_HTML_version_4.gif

3. The Differentical Equations

Let $y$ be the conentration of ES

Let $z$ be the conentration of EP

Let $e_o$ be the total enzyme concentration

Therefore, the concentration of E (the 'free' enzyme concentration) equals $e_o$ - $y$ - $z$

From the steady-state assumption, the rate of formation of $y$ will equal the rate of breakdown of $y$

$$ {dy\over dt} = {k_{1,2}\ (e_o -y - z)\ s\ +\ k_{3,2}\ z\ -\ (k_{2,1} + k_{2,3})\ y = 0}\ \ \ \ \ \ \ (2)$$

In addition, the rate of formation of $z$ will equal the rate of breakdown of $z$

$$ {dz\over dt} = {k_{1,3}\ (e_o -y - z)\ p\ +\ k_{2,3}\ y\ -\ (k_{3,2} + k_{3,1})\ z = 0}\ \ \ \ \ \ \ (3)$$

4. Solve the Differential Equations

The above differential equations may be solved using $Mathematica$.

There are many ways to do this. Here I'll use the 'old-fashioned' method of substitution.

In $Mathematica$ syntax:

realistic_mm_forSO_HTML_version_5.gif

Obtain expressions for y and z only in terms or rate-constants, realistic_mm_forSO_HTML_version_6.png, s and p.

realistic_mm_forSO_HTML_version_7.png

realistic_mm_forSO_HTML_version_8.png

realistic_mm_forSO_HTML_version_9.png

realistic_mm_forSO_HTML_version_10.png

5. The basic velocity equation

$$ {dp\over dt} = k_{3,1}\ z - {k_{1,3}\ (e_o -y - z)}\ p \ \ \ \ \ \ \ (4)$$

In $Mathematica$ syntax:

realistic_mm_forSO_HTML_version_11.png

6. The kinetic constant form of the rate law.

Using the expressions for $y$ and $z$ obtained in Section 4, an expression for the rate-constant form of the rate law may be obtained as follows:

realistic_mm_forSO_HTML_version_12.png

realistic_mm_forSO_HTML_version_13.png

7. Definition of the Kinetic Constants

realistic_mm_forSO_HTML_version_14.png

realistic_mm_forSO_HTML_version_15.png

realistic_mm_forSO_HTML_version_16.png

realistic_mm_forSO_HTML_version_17.png

realistic_mm_forSO_HTML_version_18.png

realistic_mm_forSO_HTML_version_19.png

realistic_mm_forSO_HTML_version_20.png

8. The Kinetic Constant form of the Rate Law  

$$ v = { {({{k_{cat}^f}\over{K_{m}^s}}\ s\ -{{k_{cat}^r}\over{K_{m}^p}}\ p)\ e_o }\over{1 + {{s}\over{K_{m}^s}} + {{p}\over{K_{m}^p}}}}\ \ \ \ \ (5)$$

In $Mathematica$ syntax:

realistic_mm_forSO_HTML_version_21.png

9. An Important Check   

realistic_mm_forSO_HTML_version_22.png

realistic_mm_forSO_HTML_version_23.png

Created with the Wolfram Language